Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs.
نویسندگان
چکیده
Combined optogenetic activation of the retrotrapezoid nucleus (RTN; a CO2/proton-activated brainstem nucleus) with nearby catecholaminergic neurons (C1 and A5), or selective C1 neuron stimulation, increases blood pressure (BP) and breathing, causes arousal from non-rapid eye movement (non-REM) sleep, and triggers sighs. Here we wished to determine which of these physiological responses are elicited when RTN neurons are selectively activated. The left rostral RTN and nearby A5 neurons were transduced with channelrhodopsin-2 (ChR2(+)) using a lentiviral vector. Very few C1 cells were transduced. BP, breathing, EEG, and neck EMG were monitored. During non-REM sleep, photostimulation of ChR2(+) neurons (20s, 2-20 Hz) instantly increased V̇e without changing BP (13 rats). V̇e and BP were unaffected by light in nine control (ChR2(-)) rats. Photostimulation produced no sighs and caused arousal (EEG desynchronization) more frequently in ChR2(+) than ChR2(-) rats (62 ± 5% of trials vs. 25 ± 2%; P < 0.0001). Six ChR2(+) rats then received spinal injections of a saporin-based toxin that spared RTN neurons but destroyed surrounding catecholaminergic neurons. Photostimulation of the ChR2(+) neurons produced the same ventilatory stimulation before and after lesion, but arousal was no longer elicited. Overall (all ChR2(+) rats combined), ΔV̇e correlated with the number of ChR2(+) RTN neurons whereas arousal probability correlated with the number of ChR2(+) catecholaminergic neurons. In conclusion, RTN neurons activate breathing powerfully and, unlike the C1 cells, have minimal effects on BP and have a weak arousal capability at best. A5 neuron stimulation produces little effect on breathing and BP but does appear to facilitate arousal.
منابع مشابه
Selective optogenetic stimulation of the retrotrapezoid nucleus in 2 sleeping rats activates breathing without changing blood pressure or 3 causing arousal or sighs . 4
27 Combined optogenetic activation of the retrotrapezoid nucleus (RTN, a CO2/proton28 activated brainstem nucleus) with nearby catecholaminergic neurons (C1 and A5), or selective 29 C1 neuron stimulation, increases blood pressure (BP) and breathing, causes arousal from non30 REM sleep and triggers sighs. Here we wished to determine which of these physiological 31 responses are elicited when RTN...
متن کاملOptogenetic stimulation of c1 and retrotrapezoid nucleus neurons causes sleep state-dependent cardiorespiratory stimulation and arousal in rats.
C1 catecholaminergic neurons and neurons of the retrotrapezoid nucleus are integrative nodes within the brain stem network regulating cardiorespiratory reflexes elicited by hypoxia and hypercapnia, stimuli that also produce arousal from sleep. In the present study, Channelrhodopsin-2 was selectively introduced into these neurons with a lentiviral vector to determine whether their selective acti...
متن کاملHypoxia silences retrotrapezoid nucleus respiratory chemoreceptors via alkalosis.
In conscious mammals, hypoxia or hypercapnia stimulates breathing while theoretically exerting opposite effects on central respiratory chemoreceptors (CRCs). We tested this theory by examining how hypoxia and hypercapnia change the activity of the retrotrapezoid nucleus (RTN), a putative CRC and chemoreflex integrator. Archaerhodopsin-(Arch)-transduced RTN neurons were reversibly silenced by li...
متن کاملBreathing without CO(2) chemosensitivity in conditional Phox2b mutants.
Breathing is a spontaneous, rhythmic motor behavior critical for maintaining O(2), CO(2), and pH homeostasis. In mammals, it is generated by a neuronal network in the lower brainstem, the respiratory rhythm generator (Feldman et al., 2003). A century-old tenet in respiratory physiology posits that the respiratory chemoreflex, the stimulation of breathing by an increase in partial pressure of CO...
متن کاملCO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep.
Central chemoreceptors are widespread within the brain stem. We suggest that their function at some sites may vary with the state of arousal. In this study, we tested the hypothesis that the function of chemoreceptors in the retrotrapezoid nucleus (RTN) varies with sleep and wakefulness. In unanesthetized rats, we produced focal acidification of the RTN by means of a microdialysis probe (tip co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 118 12 شماره
صفحات -
تاریخ انتشار 2015